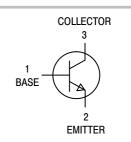
General Purpose Transistors NPN Silicon

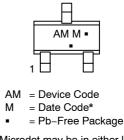
This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant*


ON Semiconductor®

http://onsemi.com


GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

SOT-416/SC-75 CASE 463 STYLE 1

MARKING DIAGRAM

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT3904TT1G	SOT-416 (Pb-Free)	3,000 Tape & Reel
SMMBT3904TT1G	SOT-416 (Pb-Free)	3,000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	۱ _C	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR–4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	600	°C/W
Total Device Dissipation, FR–4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*For additional information on our Pb-Free strategy and soldering details, please

download the ON Semiconductor Soldering and Mounting Techniques

1. FR-4 @ Minimum Pad

2. FR-4 @ 1.0 × 1.0 Inch Pad

Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (Note 3) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage $(I_{C} = 10 \ \mu Adc, I_{E} = 0)$	V _{(BR)CBO}	60	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	-	50	nAdc
ON CHARACTERISTICS (Note 3)			•	*
	h _{FE}	40 70 100 60 30	_ 300 _	-
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{CE(sat)}	- -	0.2 0.3	Vdc
Base – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	0.65 _	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current – Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	300	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	4.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	_	8.0	pF
Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{ie}	1.0	10	kΩ
Voltage Feedback Ratio (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	0.5	8.0	X 10 ⁻⁴
Small – Signal Current Gain (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-
Output Admittance (V_{CE} = 10 Vdc, I_{C} = 1.0 mAdc, f = 1.0 kHz)	h _{oe}	1.0	40	μmhos
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz)	NF	-	5.0	dB
SWITCHING CHARACTERISTICS				
Delay Time (V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc) MMBT3904TT1G, SMMBT3904TT1G	t _d	-	35	

Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc) MMBT3904TT1G, SMMBT3904TT1G	t _d	-	35		
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 mAdc) MMBT3904TT1G, SMMBT3904TT1G	t _r	_	35	ns	
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc) MMBT3904TT1G, SMMBT3904TT1G		_	200	115	
Fall Time	(I _{B1} = I _{B2} = 1.0 mAdc) MMBT3904TT1G, SMMBT3904TT1G	t _f	_	50		

3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

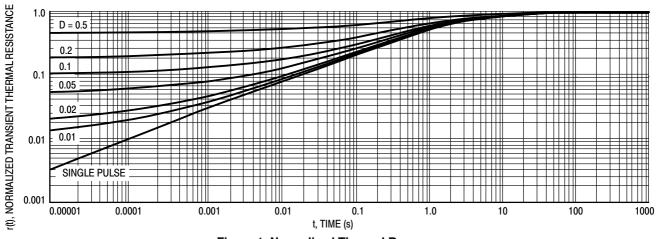
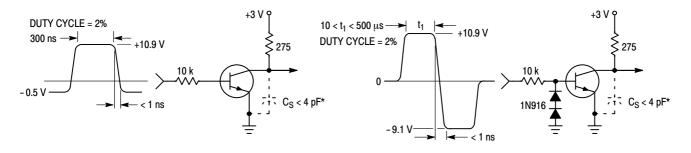
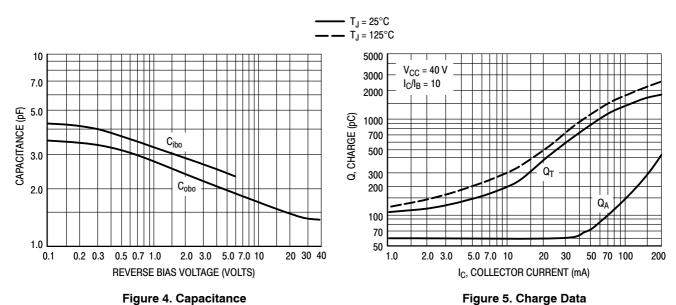
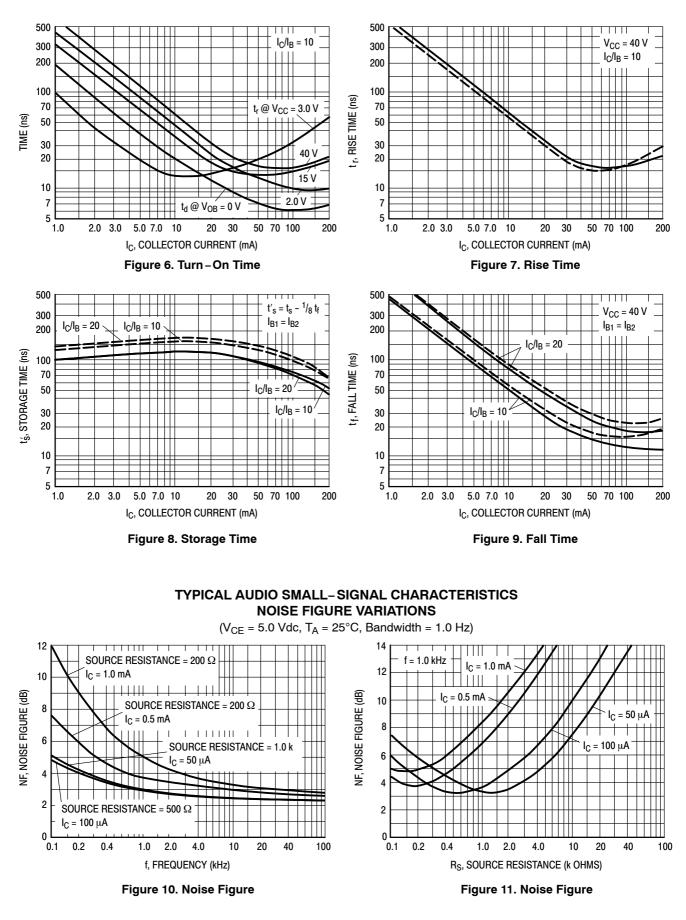




Figure 1. Normalized Thermal Response



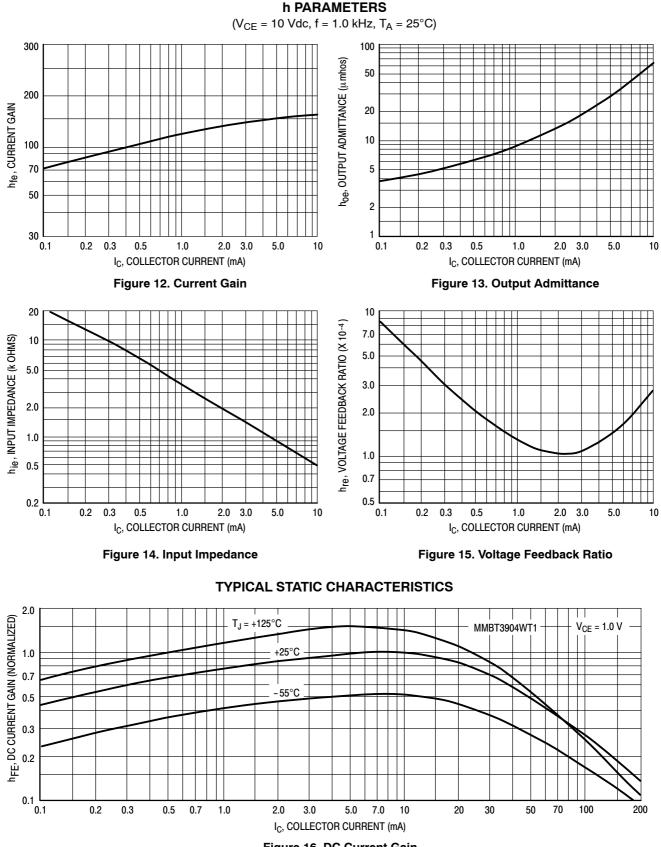
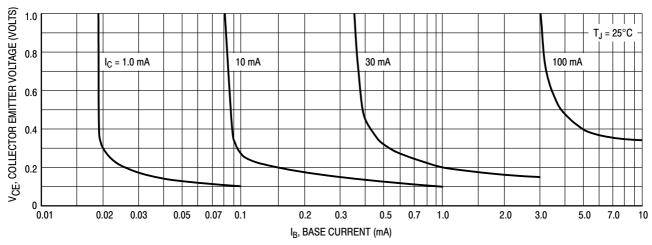
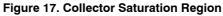

* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit Figure 3. Storage and Fall Time Equivalent Test Circuit




TYPICAL TRANSIENT CHARACTERISTICS

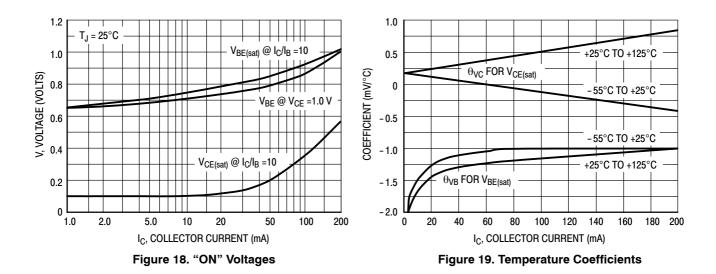
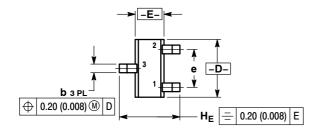
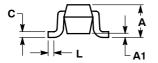


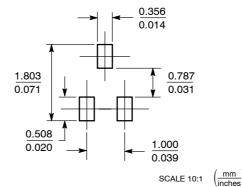
Figure 16. DC Current Gain





PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463-01 ISSUE F


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
E	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			C	.04 BSC	
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.061	0.063	0.065

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use patent shall claims and so for the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for seale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MMBT3904TT1G