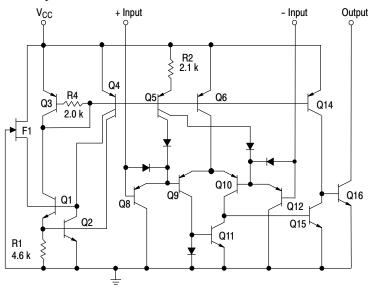
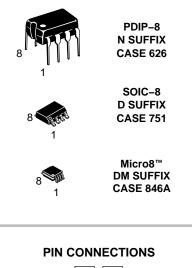
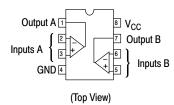
Low Offset Voltage Dual Comparators

The LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range-to-ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.

Features

- Wide Single–Supply Range: 2.0 Vdc to 36 Vdc
- Split–Supply Range: ±1.0 Vdc to ±18 Vdc
- Very Low Current Drain Independent of Supply Voltage: 0.4 mA
- Low Input Bias Current: 25 nA
- Low Input Offset Current: 5.0 nA
- Low Input Offset Voltage: 5.0 mV (max) LM293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels
- ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


Figure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)

ON Semiconductor®

http://onsemi.com

DEVICE MARKING AND ORDERING INFORMATION

See detailed marking information and ordering and shipping information on pages 6 and 7 of this data sheet.

LM393/D

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+36 or ±18	V
Input Differential Voltage	V _{IDR}	36	V
Input Common Mode Voltage Range (Note 1)	V _{ICR}	-0.3 to +36	V
Output Voltage	V _O	36	V
Output Short Circuit-to-Ground Output Sink Current (Note 2)	I _{SC} I _{Sink}	Continuous 20	mA
Power Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	Ρ _D 1/R _{θJA}	570 5.7	mW mW/°C
Operating Ambient Temperature Range LM293 LM393 LM2903 LM2903V, NCV2903 (Note 3) NCV2903V (Note 3)	T _A	-25 to +85 0 to +70 -40 to +105 -40 to +125 -40 to +150	°C
Maximum Operating Junction Temperature LM393, 2903, LM2903V LM293, NCV2903	T _{J(max)}	150 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
ESD Protection at any Pin (Note 4) – Human Body Model – Machine Model	V _{ESD}	1500 150	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. For supply voltages less than 36 V, the absolute maximum input voltage is equal to the supply voltage.

Pol supply voltages less than 50 v, the absolute maximum input voltage is equal to the supply voltage.
 The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.
 NCV2903 and NCV2903V are qualified for automotive use.
 V_{ESD} rating for NCV/SC devices is: Human Body Model – 2000 V; Machine Model – 200 V.

		LM293, LM393			LM2903, LM2903V, NCV2903, NCV2903V			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 6) $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	V _{IO}	_ _	±1.0 _	±5.0 ±9.0		±2.0 ±9.0	±7.0 ±15	mV
Input Offset Current $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	I _{IO}		±5.0 -	±50 ±150		±5.0 ±50	±50 ±200	nA
Input Bias Current (Note 7) $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	I _{IB}	-	20 -	250 400	-	20 20	250 500	nA
Input Common Mode Voltage Range (Note 7) $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	V _{ICR}	0 0	-	V _{CC} –1.5 V _{CC} –2.0	0 0	-	V _{CC} –1.5 V _{CC} –2.0	V
Voltage Gain $R_L \ge 15 \text{ k}\Omega$, $V_{CC} = 15 \text{ Vdc}$, $T_A = 25^{\circ}C$	A _{VOL}	50	200	-	25	200	-	V/mV
Large Signal Response Time V_{in} = TTL Logic Swing, V_{ref} = 1.4 Vdc V_{RL} = 5.0 Vdc, R_L = 5.1 k Ω , T_A = 25°C	-	-	300	-	-	300	-	ns
Response Time (Note 9) $V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	t _{TLH}	-	1.3	-	-	1.5	-	μs
Input Differential Voltage (Note 10) All $V_{in} \ge GND$ or V– Supply (if used)	V _{ID}	-	-	V _{CC}	-	-	V _{CC}	V
Output Sink Current $V_{in} \geq 1.0 \text{ Vdc}, V_{in+} = 0 \text{ Vdc}, V_O \leq 1.5 \text{ Vdc } T_A = 25^{\circ}C$	I _{Sink}	6.0	16	-	6.0	16	-	mA
$ \begin{array}{l} \text{Output Saturation Voltage} \\ \text{V}_{in} \geq 1.0 \text{ Vdc}, \text{ V}_{in+} = 0, \text{ I}_{Sink} \leq 4.0 \text{ mA}, \text{ T}_{A} = 25^{\circ}\text{C} \\ \text{T}_{Iow} \leq \text{T}_{A} \leq \text{T}_{high} \end{array} $	V _{OL}		150 -	400 700		_ 200	400 700	mV
$ \begin{array}{l} \text{Output Leakage Current} \\ V_{in-} = 0 \ V, \ V_{in+} \geq 1.0 \ Vdc, \ V_O = 5.0 \ Vdc, \ T_A = 25^\circ C \\ V_{in-} = 0 \ V, \ V_{in+} \geq 1.0 \ Vdc, \ V_O = 30 \ Vdc, \\ T_{-} = C \ T_{-} \leq T_{-} $	I _{OL}	_	0.1	-	_	0.1	-	nA
$\begin{split} T_{low} &\leq T_A \leq T_{high} \\ \\ Supply Current \\ R_L &= \infty \text{ Both Comparators, } T_A &= 25^\circ\text{C} \\ R_L &= \infty \text{ Both Comparators, } V_{CC} &= 30 \text{ V} \end{split}$	I _{CC}		- 0.4 -	1000 1.0 2.5		_ 0.4 _	1000 1.0 2.5	mA

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc}, T_{low} \le T_A \le T_{high}$, unless otherwise noted.)

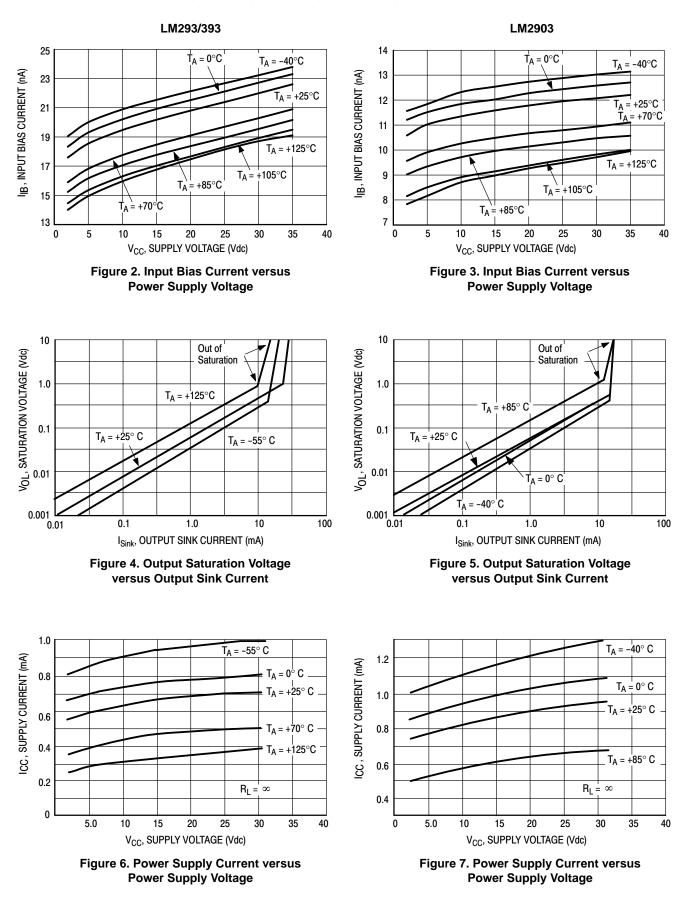
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

LM293 $T_{low} = -25^{\circ}C$, $T_{high} = +85^{\circ}C$

 $\begin{array}{l} \text{LM393 } T_{\text{low}} = 2^{\circ}\text{C}, \ T_{\text{high}} = +70^{\circ}\text{C} \\ \text{LM393 } T_{\text{low}} = 0^{\circ}\text{C}, \ T_{\text{high}} = +70^{\circ}\text{C} \\ \text{LM2903 } T_{\text{low}} = -40^{\circ}\text{C}, \ T_{\text{high}} = +105^{\circ}\text{C} \\ \text{LM2903V } \& \ \text{NCV2903 } T_{\text{low}} = -40^{\circ}\text{C}, \ T_{\text{high}} = +125^{\circ}\text{C} \\ \text{NCV2903V } T_{\text{low}} = -40^{\circ}\text{C}, \ T_{\text{high}} = +150^{\circ}\text{C} \\ \end{array}$

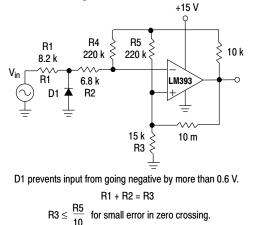
NCV2903 and NCV2903V are qualified for automotive use.

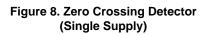
5. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.


6. At output switch point, $V_0 \simeq 1.4$ Vdc, $R_s = 0 \Omega$ with V_{CC} from 5.0 Vdc to 30 Vdc, and over the full input common mode range $(0 \text{ V to V}_{CC} = -1.5 \text{ V}).$

7. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.

8. Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is V_{CC} -1.5 V.


9. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.


10. The comparator will exhibit proper output state if one of the inputs becomes greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation, input resistors <10 k Ω should be used.

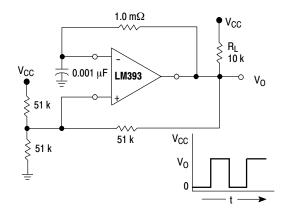
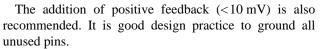
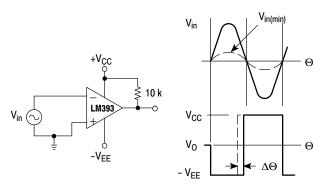
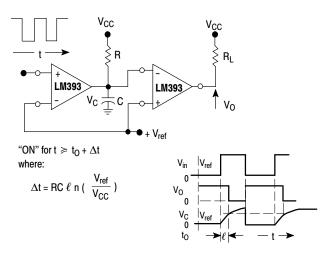
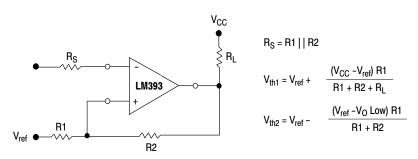




Figure 10. Free–Running Square–Wave Oscillator

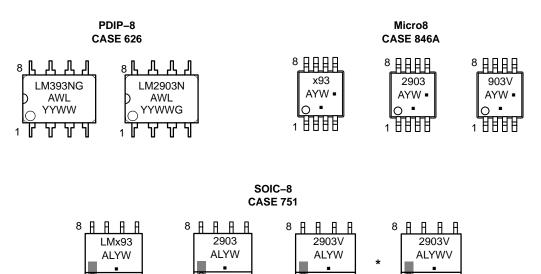


Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.



 $V_{in(min)} \approx 0.4$ V peak for 1% phase distortion ($\Delta \Theta$).

Figure 9. Zero Crossing Detector (Split Supply)



MARKING DIAGRAMS

Н

Н

┲ Н Н Н

1

Η

= Assembly Location

= Pb-Free Package

1 H

= 2 or 3

= Year WW, W = Work Week

= Wafer Lot

(Note: Microdot may be in either location) *This marking diagram also applies to NCV2903DR2G

H H

WL, L

YY, Y

∎, G

Η

х А

1

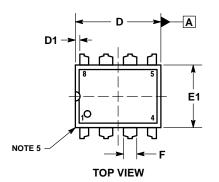
Н

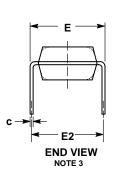
<u>H H H</u>

1

http://onsemi.com 6

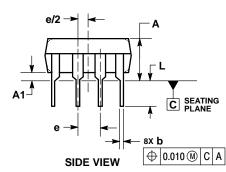
ORDERING INFORMATION

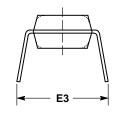

Device	Operating Temperature Range	Package	Shipping [†]	
LM293DG		SOIC-8	98 Units / Rail	
LM293DR2G	-25°C to +85°C	(Pb-Free)	2500 / Tape & Reel	
LM293DMR2G		Micro8 (Pb–Free)	4000 / Tape and Reel	
LM393DG		SOIC-8	98 Units / Rail	
LM393DR2G		(Pb-Free)	2500 / Tape & Reel	
LM393NG	0°C to +70°C	PDIP-8 (Pb-Free)	50 Units / Rail	
LM393DMR2G		Micro8 (Pb–Free)	4000 / Tape and Reel	
LM2903DG		SOIC-8 (Pb-Free)	98 Units / Rail	
LM2903DR2G			2500 / Tape & Reel	
LM2903DMR2G	−40°C to +105°C	Micro8 (Pb–Free)	4000 / Tape and Reel	
LM2903NG		PDIP-8 (Pb-Free)	50 Units / Rail	
LM2903VDG		SOIC-8	98 Units / Rail	
LM2903VDR2G		(Pb-Free)	2500 / Tape & Reel	
LM2903VNG	-40°C to +125°C	PDIP-8 (Pb-Free)	50 Units / Rail	
NCV2903DR2G*		SOIC-8 (Pb-Free)	2500 / Tape & Reel	
NCV2903DMR2G*		Micro8 (Pb–Free)	4000 / Tape & Reel	
NCV2903VDR2G*	-40°C to +150°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel	


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

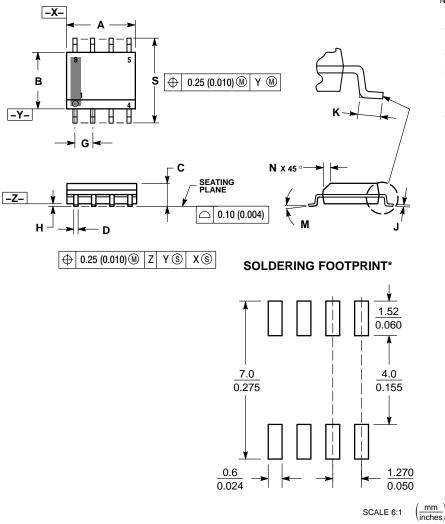
PACKAGE DIMENSIONS


PDIP-8 **N SUFFIX** CASE 626-05 **ISSUE M**



NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION E IS MEASURED WITH THE LEADS RE-STRAINED PARALLEL AT WIDTH E2. 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INCHES			MILLIMETERS		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			0.210			5.33
A1	0.015			0.38		
b	0.014	0.018	0.022	0.35	0.46	0.56
С	0.008	0.010	0.014	0.20	0.25	0.36
D	0.355	0.365	0.400	9.02	9.27	10.02
D1	0.005			0.13		
E	0.300	0.310	0.325	7.62	7.87	8.26
E1	0.240	0.250	0.280	6.10	6.35	7.11
E2	0.300 BSC			-	7.62 BSC)
E3			0.430			10.92
е	0.100 BSC				2.54 BSC)
L	0.115	0.130	0.150	2.92	3.30	3.81



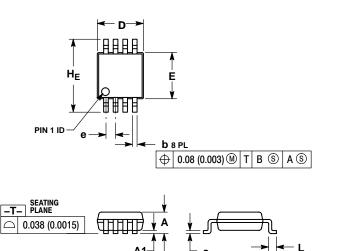
END VIEW

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

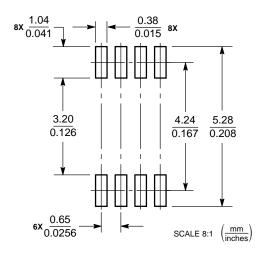

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED

- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION D DOES NOT INCLODE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDADD IS 74.07
- STANDARD IS 751-07.

	MILLIN	IETERS	INCHES				
DIM	MIN	IIN MAX MIN		MAX			
Α	4.80	5.00	0.189	0.197			
в	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.053	0.069			
D	0.33	0.51	0.013	0.020			
G	1.27 BSC		0.050 BSC				
н	0.10	0.25	0.004	0.010			
J	0.19	0.25	0.007	0.010			
к	0.40	1.27	0.016	0.050			
М	0 °	8 °	0 °	8 °			
Ν	0.25	0.50	0.010	0.020			
S	5.80	6.20	0.228	0.244			

PACKAGE DIMENSIONS

Micro8[™] CASE 846A-02 **ISSUE H**



NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 3.
- 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. 4. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
с	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е	0.65 BSC			0.026 BSC		
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NCV2903DMR2G NCV2903DR2G LM2903DG LM2903DMR2G LM2903DR2G LM2903NG LM2903VDG LM2903VDR2G LM2903VNG LM293DG LM293DMR2G LM293DR2G LM393DR2G LM393DMR2G LM393DR2G LM393NG