

February 2013

BSS84 P-Channel Enhancement Mode Field-Effect Transistor

Features

- -0.13 A, -50 V, R_{DS(ON)} = 10 Ω at V_{GS} = -5 V
- Voltage-Controlled P-Channel Small-Signal Switch
- High-Density Cell Design for Low R_{DS(ON)}
- **High Saturation Current**

Description

P-channel enhancement-mode field-effect This transistor is produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process minimizes on-state resistance and to provide rugged and reliable performance and fast switching. The BSS84 can be used, with a minimum of effort, in most applications requiring up to 0.13 A DC and can deliver current up to 0.52 A. This product is particularly suited to low-voltage applications requiring а low-current high-side switch.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at T_A = 25°C unless otherwise noted.

Symbol			Parameter	Ratings	Unit
V _{DSS}	Drain-Source Voltage			-50	V
V _{GSS}	Gate-Source Voltage			±20	V
I _D E	Drain Current ⁽¹⁾	Continuous	-0.13	A	
			Pulsed	-0.52	A
P	Maximum Power Dissipation ⁽¹⁾			0.36	W
PD	Derate Above 25°C			2.9	mW / °C
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering			300	J°
۰L	Purposes, 1/16" from Case for 10 Seconds			300	U

Thermal Characteristics

$R_{\theta J A}$	Thermal Resistance, Junction-to-Ambient ⁽¹⁾	350	°C/W
Noto			

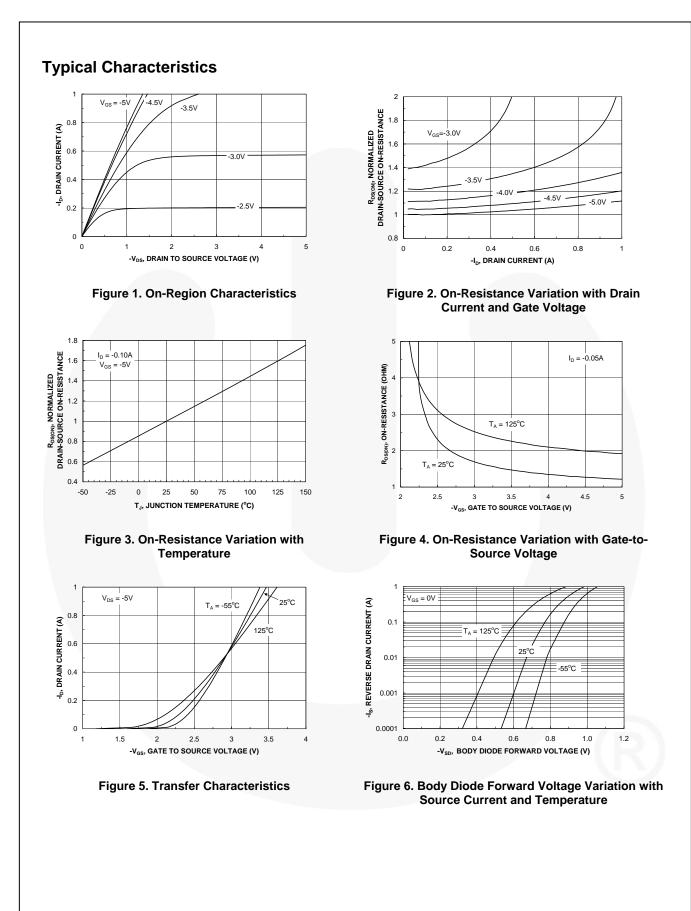
1. R_{0.1A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JA} is guaranteed by design, while R_{0JA} is determined by the user's board design.

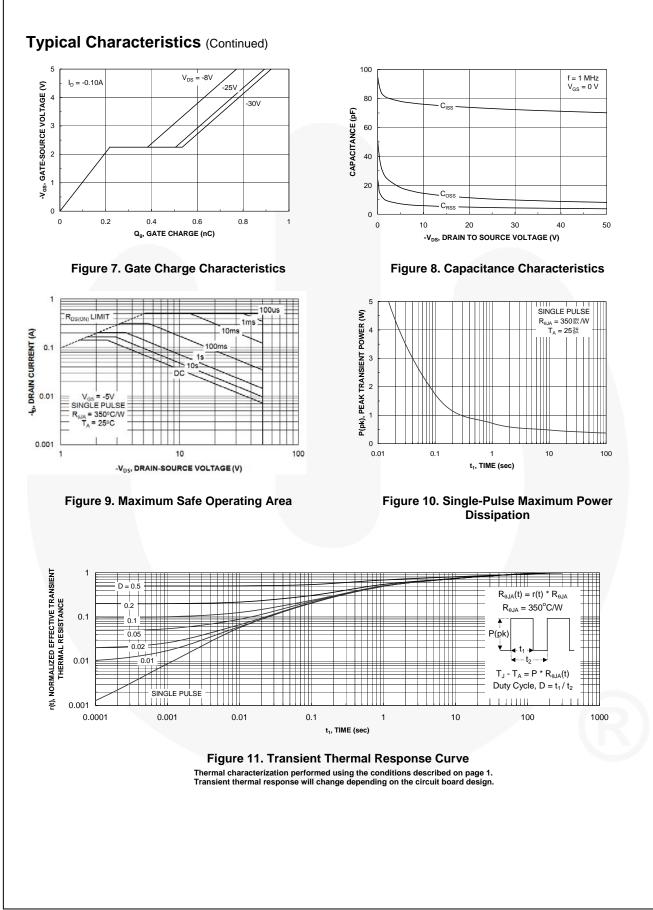
a) 350°C/W when mounted on a minimum pad

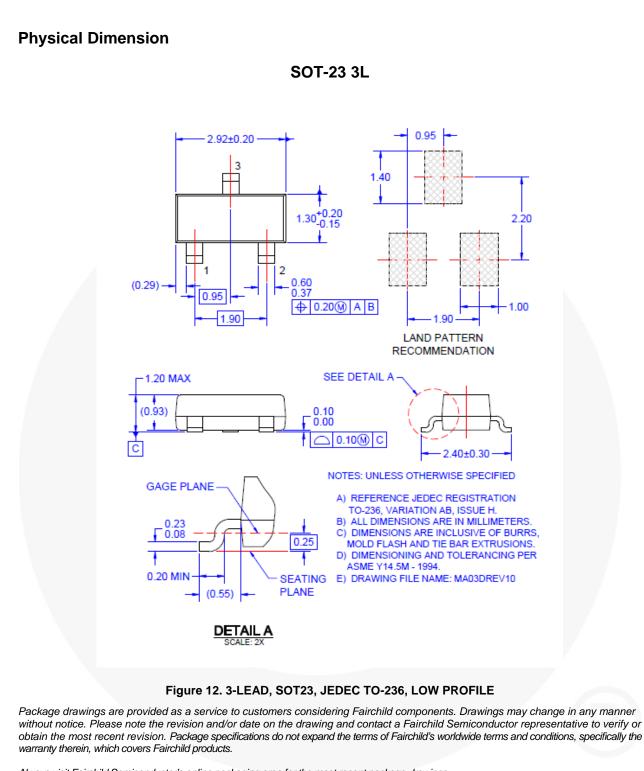
Scale 1: 1 on letter-size paper.

Package Marking and Ordering Information

Device Marking Device		Reel Size	Tape width	n Quantity	
SP BSS84		7"	8mm	3000	


Electrical Characteristics⁽²⁾


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Char	acteristics					1
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-50			V
ΔBV_{DSS}	Breakdown Voltage Temperature	$I_{\rm D} = -250 \ \mu {\rm A},$		-48		mV / °C
ΔT_{J}	Coefficient	Referenced to 25°C				
	Zero Gate Voltage Drain Current	$V_{DS} = -50 \text{ V}, V_{GS} = 0 \text{ V}$			-15	μA
I _{DSS}		$V_{DS} = -50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$			60	
		$T_J = 125^{\circ}C$			-60	μA
I _{GSS}	Gate–Body Leakage.	$V_{GS} = \pm 20 \text{ V}, \ V_{DS} = 0 \text{ V}$			±10	nA
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-50			V
On Chara	acteristics ⁽²⁾					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -1 \text{ mA}$	-0.8	-1.7	-2	V
V _{GS(TH)}	Gate Threshold Voltage	$I_D = -1 \text{ mA},$	/			
<u>_есс, н</u>	Temperature Coefficient	Referenced to 25℃		3		mV / ℃
		$V_{GS} = -5 \text{ V}, I_{D} = -0.10 \text{ A}$		1.2	10.0	Ω
Reader	Static Drain–Source On–Resistance	$V_{GS} = -5 V, I_D = -0.10 A,$				
20(01)		$T_{\rm J} = 125^{\circ}{\rm C}$		1.9	17.0	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -5 V, V_{DS} = -10 V$	-0.6			А
g FS	Forward Transconductance	$V_{DS} = -25 \text{ V}, I_D = -0.10 \text{ A}$	0.05	0.60		S
Dynamic	Characteristics					
CISS	Input Capacitance	$V_{\rm DS} = -25 \rm V,$		73		pF
Coss	Output Capacitance	$V_{GS} = 0 V,$		10		pF
C _{RSS}	Reverse Transfer Capacitance	f = 1.0 MHz		5		pF
R _G	Gate Resistance $V_{GS} = -15 \text{ mV}, f = 1.0 \text{ MHz}$			9		Ω
Switchin	g Characteristics ⁽²⁾		•			
t _{d(on)}	Turn–On Delay			2.5	5.0	ns
tr	Turn–On Rise Time	$V_{DD} = -30 V, I_D = -0.27 A,$		6.3	13.0	ns
t _{d(off)}	Turn-Off Delay	$V_{GS} = -10 \text{ V}, \text{ R}_{GEN} = 6$		10	20	ns
t _f	Turn–Off Fall Time			4.8	9.6	ns
Qg	Total Gate Charge			0.9	1.3	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = -25 V, I_D = -0.10 A,$		0.2		nC
Q_{gd}	Gate-Drain Charge $V_{GS} = -5 V$			0.3		nC
Drain-So	urce Diode Characteristics and	l Maximum Ratings				
Is	Maximum Continuous Drain-Source	Diode Forward Current			-0.13	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -0.26 A^{(2)}$		-0.8	-1.2	V
t _{RR}	Diode Reverse-Recovery Time	I _F = -0.1 A,		10		ns
Q _{RR}	Diode Reverse-Recovery Charge	$d_{iF} / d_t = 100 \text{ A} / \mu \text{s}^{(2)}$		3	/	nC


BSS84 — P-Channel Enhancement Mode Field-Effect Transistor

Note:

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packaging/tr/SOT23-3L_tr.pdf.

BSS84 • Rev. 1.1.0

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED**® Dual Cool™ **EcoSPARK**[®] EfficientMax™ ESBC™ R F Fairchild®

Fairchild Semiconductor[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™ F-PFS™ **FRFET**® Global Power Resource[™] GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Louder and Better™ MeaaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR**[®]

FPS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFĔT QS™ Quiet Series™ RapidConfigure™ ⊃™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM GENERAL^{®*}

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPWer™ TinyWI™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS ON OT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: BSS84 BSS84_Q