2N7002L, 2V7002L

Small Signal MOSFET

60 V, 115 mA, N-Channel SOT-23

Features

- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable (2V7002L)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

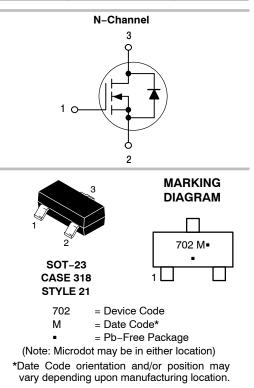
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	V _{DGR}	60	Vdc
Drain Current – Continuous T _C = 25°C (Note 1) T _C = 100°C (Note 1) – Pulsed (Note 2)	I _D I _D I _{DM}	±115 ±75 ±800	mAdc
Gate–Source Voltage – Continuous – Non–repetitive (t _p ≤ 50 μs)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Total Device Dissipation FR–5 Board (Note 3) T _A = 25°C Derate above 25°C Thermal Resistance, Junction–to–Ambient	P _D R _{θJA}	225 1.8 556	mW mW/°C °C/W
Total Device Dissipation (Note 4) Alumina Substrate, T _A = 25°C Derate above 25°C Thermal Resistance, Junction-to-Ambient	P _D R _{θJA}	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- 1. The Power Dissipation of the package may result in a lower continuous drain current.
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- 3. FR-5 = 1.0 x 0.75 x 0.062 in.
- 4. Alumina = 0.4 x 0.3 x 0.025 in 99.5% alumina.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	7.5 Ω @ 10 V, 500 mA	115 mA

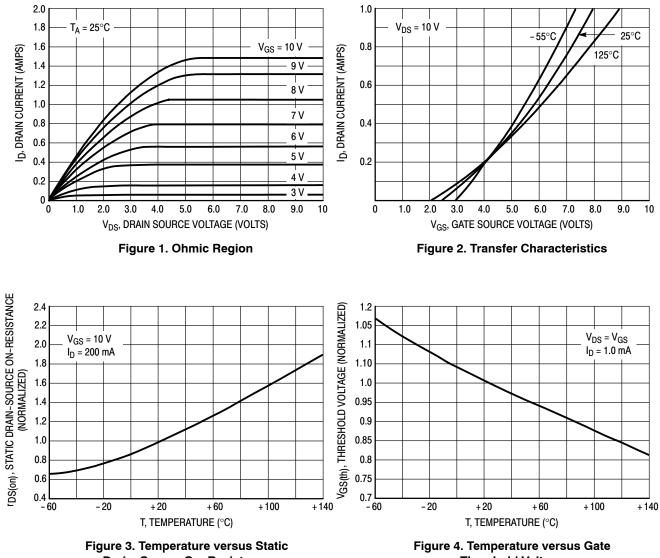
ORDERING INFORMATION

Device	Package	Shipping [†]		
2N7002LT1G	SOT-23	3000 Tape & Reel		
2N7002LT3G	(Pb-Free)	10,000 Tape & Reel		
2V7002LT1G		3000 Tape & Reel		
2V7002LT3G	SOT-23	10,000 Tape & Reel		
2N7002LT1H*	(Pb-Free)	3000 Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*Not for new design.

2N7002L, 2V7002L

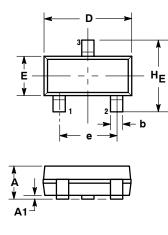

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

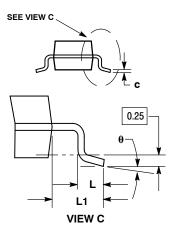
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain–Source Breakdown Voltage (V_{GS} = 0, I _D = 10 µAdc)	V _{(BR)DSS}	60	-	-	Vdc
$ \begin{array}{ll} \mbox{Zero Gate Voltage Drain Current} & T_J = 25^\circ C \\ (V_{GS} = 0, V_{DS} = 60 Vdc) & T_J = 125^\circ C \end{array} $	I _{DSS}	-		1.0 500	μAdc
Gate-Body Leakage Current, Forward (V _{GS} = 20 Vdc)	I _{GSSF}	-	-	100	nAdc
Gate-Body Leakage Current, Reverse (V _{GS} = -20 Vdc)	I _{GSSR}	_	-	-100	nAdc
ON CHARACTERISTICS (Note 5)			•		•
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$	V _{GS(th)}	1.0	-	2.5	Vdc
$ \begin{array}{l} On-State \ Drain \ Current \\ (V_{DS} \geq 2.0 \ V_{DS(on)}, \ V_{GS} = 10 \ Vdc) \end{array} $	I _{D(on)}	500	-	-	mA
$\begin{array}{l} \text{Static Drain-Source On-State Voltage} \\ (\text{V}_{\text{GS}} = 10 \text{ Vdc}, \text{ I}_{\text{D}} = 500 \text{ mAdc}) \\ (\text{V}_{\text{GS}} = 5.0 \text{ Vdc}, \text{ I}_{\text{D}} = 50 \text{ mAdc}) \end{array}$	V _{DS(on)}	- -		3.75 0.375	Vdc
$ \begin{array}{ll} \mbox{Static Drain-Source On-State Resistance} \\ (V_{GS} = 10 \mbox{ V}, \mbox{ I}_D = 500 \mbox{ mAdc}) & T_C = 25^\circ C \\ (V_{GS} = 5.0 \mbox{ Vdc}, \mbox{ I}_D = 50 \mbox{ mAdc}) & T_C = 125^\circ C \\ T_C = 125^\circ C \\ T_C = 125^\circ C \end{array} $	r _{DS(on)}	- - -	_ _ _	7.5 13.5 7.5 13.5	Ohms
Forward Transconductance $(V_{DS} \ge 2.0 V_{DS(on)}, I_D = 200 \text{ mAdc})$	9 _{FS}	80	-	-	mS
DYNAMIC CHARACTERISTICS					
Input Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	-	50	pF
Output Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{oss}	-	-	25	pF
Reverse Transfer Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{rss}	-	-	5.0	pF
SWITCHING CHARACTERISTICS (Note 5)					
Turn-On Delay Time $(V_{DD} = 25 \text{ Vdc}, I_D \cong 500 \text{ mAdc},$	t _{d(on)}	-	-	20	ns
Turn–Off Delay Time $R_G = 25 \Omega$, $R_L = 50 \Omega$, $V_{gen} = 10 V$)	t _{d(off)}	-	-	40	ns
BODY-DRAIN DIODE RATINGS					
Diode Forward On-Voltage (I _S = 11.5 mAdc, V _{GS} = 0 V)	V _{SD}	-	-	-1.5	Vdc
Source Current Continuous (Body Diode)	I _S	-	-	-115	mAdc
Source Current Pulsed	I _{SM}	-	-	- 800	mAdc
	•				•

5. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N7002L, 2V7002L

TYPICAL ELECTRICAL CHARACTERISTICS




Drain-Source On-Resistance

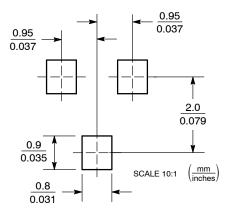
Threshold Voltage

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AP**

NOTES

STYLE 21: PIN 1. GATE


2. 3. SOURCE

DRAIN

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 1. CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH 2
- 3. THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4

NUL INSTERO							
	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
θ	0°		10°	0°		10°	

SOLDERING FOOTPRINT

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. Al listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without imitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and to vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" matching in the provided of a science of the second of the secon surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

2N7002LT1 2N7002LT1G 2N7002LT3 2N7002LT3G 2V7002LT1G 2V7002LT3G