High Performance, Low Noise Boost Converter

General Description

The RT9277C/D is a high performance, low noise, fixed frequency step up DC-DC Converter. The RT9277C/D converters input voltage ranging 2.5 V to 5.5 V into output voltage up to 16 V . Current mode control with external compensation network makes it easy to stabilize the system and keep maximum flexibility. Soft start function minimizes impact on the input power system. Internal power MOSFET with very low $R_{D S(O N)}$ provides high efficiency. The RT9277C/D with 640 kHz and 1.2 MHz operation frequency options provide flexibiltity of minimum output inductor size, maximum efficiency and low BOM cost.

The RT9277C/D also provides comprehensive protection functions such as UVLO, OCP and OTP.

Ordering Information

 RT9277C/DㅁㅁPackage Type
F: MSOP-8
QW : WDFN-8L 3x3 (W-Type)
Lead Plating System
G: Green (Halogen Free and Pb Free)
Soft Start Function
C : External Programmable
D : Internal Programmable
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

- Efficiency up to 90\%
- V_{IN} Operating Range : 2.5V to 5.5V
- 1.6A, 0.2 $2,16 \mathrm{~V}$ Internal Power MOSFET
- 640 kHz and 1.2 MHz Operation Frequency
- External Compensation
- Internal/External Programmable Soft Start
- Small MSOP8 Package
- OCP and OTP Function are Included
- RoHS Compliant and Halogen Free

Applications

- TFTLCD panel
- OLEDDisplay
- PCMCIA Cards
- Portable Device

Pin Configurations

RT9277D

Typical Application Circuit

Figure 1

Figure 2
Table 1. Recommended Components

Symbol (unit)	VIN (V)	VOUT (V)	$\begin{gathered} \text { Fosc } \\ \text { (Hz) } \end{gathered}$	$\begin{gathered} \mathrm{C} 1 \\ (\mu \mathrm{~F}) \end{gathered}$	$\begin{gathered} \mathrm{L} 1 \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \hline \mathrm{C} 2 \\ (\mu \mathrm{~F}) \end{gathered}$	$\begin{gathered} \text { R3 } \\ \text { (k } \Omega) \end{gathered}$	$\begin{gathered} \text { C3 } \\ \text { (pF) } \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ (\mathrm{pF}) \end{gathered}$
Application 1	3.3	9	1.2M	10	4.7(TDK SLF6028)	33 (ceramic)	82	820	10
Application 2	3.3	12	1.2M	10	4.7(TDK SLF6028)	33 (ceramic)	180	680	22
Application 3	3.3	12	640K	10	10(TDK SLF6028)	33 (ceramic)	120	1200	22

Function Block Diagram

RT9277C

RT9277D

Operation

The RT9277C/D is a high efficiency step-up Boost converter with a fixed-frequency, current-mode PWM architecture. It performs fast transient response and low noise operation with appropriate component selection. The output voltage is regulated through a feedback control consisting of an error amplifier, a summing comparator, and several control signal generators (as shown in function block diagram). The feedback reference voltage is 1.24 V . The error amplifier varies the COMP voltage by sensing the FB pin. The slope compensation signal summed with the current -sense signal will be compared with the COMP voltage through the summing comparator to determine the current trip point and duty cycle.

Soft-Start

The RT9277C provides programmable soft-start function. When the EN pin is connected to high, a $4 \mu \mathrm{~A}$ constant current is sourced to charge an external capacitor. The voltage rate of rise on the COMP pin is limited during the charging period, and so is the peak inductor current.

When the EN pin is connected to GND, the external capacitor will be discharged to ground for the next time soft-start.

Current Limitation

The switch current is monitored to limit the value not to exceed 1.6A typically. When the switch current reaches 1.6A, the output voltage will be pulled down to limit the total output power to protect the power switch and external components.

Shutdown

Connect the EN to GND to turn the RT9277C/D off and reduce the supply current to $0.1 \mu \mathrm{~A}$. In this operation, the output voltage is the value of V_{IN} to subtract the forward voltage of catch diode.

Frequency Selection

The switching frequency of RT9277C/D can be selected to operate at either 640 kHz or 1.2 MHz . When the FREQ pin is connected to GND for 640kHz operation, and connected to VIN for 1.2 MHz operation. FREQ is preset to 640 kHz operation for allowing the FREQ pin unconnected.

Functional Pin Description

Pin No.		Pin Name	Pin Function
RT9277C	RT9277D		
1	1	COMP	Compensation Pin for Error Amplifier. Connect a compensation network to ground. See the Component Selection Table for the loop compensation.
2	2	FB	Feedback Pin. Connect an extemal resistor-divider tap to FB. The typical reference voltage is 1.24 V .
3	3	EN	Shutdown Control Input. Connect EN to GND to turn off the RT9277C/D.
$\begin{gathered} 4, \\ 9 \text { (Exposed pad) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 4, \\ 9 \text { (Exposed pad) } \end{gathered}$	GND	Ground Pin. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
5	5	LX	Switch Pin. Connect the inductor and catch diode to LX pin. Widen and shorten the connected trace to minimize EMI.
6	6	VIN	Supply Pin. Place at least a $1 \mu \mathrm{~F}$ ceramic capacitor close to RT9277C/D for bypassing noise.
7	7	FREQ	Frequency Select Pin. Oscillator frequency is 640 kHz as FREQ is connected to GND, and 1.2 MHz as FREQ is connected to VIN. A $5 \mu \mathrm{~A}$ pull-down current is sinking on this pin.
8	--	SS	Soft-Start Control Pin. Connect a soft-start capacitor (Css) to this pin. A $4 \mu \mathrm{~A}$ constant current charges the soft-start capacitor. When EN is connected to GND, the soft-start capacitor is discharged. When EN is connected to VIN high, the soft-start capacitor is charged to VIN. Leave floating for not using soft-start.
--	8	NC	No Internal Connection.

Absolute Maximum Ratings (Note 1)

- The other pins -0.3 V to 6 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$MSOP-8625 mW
WDFN-8L 3x3 926 mW
- Package Thermal Resistance (Note 2) MSOP-8, θ_{JA} $160^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-8L $3 \times 3, \theta_{\mathrm{JA}}$ $108^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-8L $3 \times 3, \theta_{\mathrm{Jc}}$ 7.5W
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Mode) 2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$, FREQ left floating, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise specification)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
System Supply Input						
Operation voltage Range	VIN		2.5	-	5.5	V
Under Voltage Lock Out	UVLO		1.9	2	2.1	V
Power On Reset Hysteresis			--	100	--	mV
Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$, No switching	-	250	500	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$, Switching, No load	-	2	5	mA
Shut Down Current	ISHDN	EN = GND	--	--	1	$\mu \mathrm{A}$
Soft start Current (RT9277C)	Iss	$\mathrm{V}_{S S}=1.2 \mathrm{~V}$	1.5	4	7	$\mu \mathrm{A}$
Switching Regulator Oscillator						
Free Run Frequency	fosc	FREQ = GND	540	640	740	kHz
		FREQ $=\mathrm{V}_{\text {IN }}$	--	1200	--	
Maximum Duty Cycle			82	90	96	\%
Reference Voltage						
Feedback Reference Voltage	$V_{\text {REF }}$	$\mathrm{V}_{\text {COMP }}=1.24 \mathrm{~V}$	1.227	1.24	1.253	V

To be continued

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Error Amplifier						
Transconductance	G_{m}		70	140	240	$\mu \Omega$
Voltage Gain	A_{V}		--	700	-	V/V
Feedback Voltage Line Regulation		$\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.24 \mathrm{~V}, \\ & 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<5.5 \mathrm{~V} \end{aligned}$	--	0.05	0.15	\%/V
MOSFET						
On Resistance of MOSFET	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$		--	200	500	$\mathrm{m} \Omega$
Current Limitation			1.2	1.6	--	A
Enable Control Input						
Input Low Voltage	VIL	$2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$	--	-	$0.3 \times \mathrm{V}_{\text {IN }}$	V
Input High Voltage	V_{IH}	$2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$	$0.7 \times \mathrm{V}_{\text {IN }}$	-	--	V
Hysteresis			--	0.1	-	V
Protection Function						
Over Temperature Protection			--	170	--	${ }^{\circ} \mathrm{C}$
Hysteresis			--	20	-	${ }^{\circ} \mathrm{C}$

Note 1.Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

Output Voltage vs. Output Current

Output Voltage vs. Input Voltage

Output Voltage vs. Input Voltage

Application Information

The IC contains a high performance boost regulator to generate voltage for the panel source driver ICs. The following content contains the detailed description and the information of component selection.

Inductor Selection

For a better efficiency in high switching frequency converter, the inductor selection has to use a proper core material such as ferrite core to reduce the core loss and choose low ESR wire to reduce copper loss. The most important point is to prevent the core saturated when handling the maximum peak current. Using a shielded inductor can minimize radiated noise in sensitive applications. The maximum peak inductor current is the maximum input current plus the half of inductor ripple current. The calculated peak current has to be smaller than the current limitation in the electrical characteristics. A typical setting of the inductor ripple current is 20% to 40% of the maximum input current. If the selection is 40%, the maximum peak inductor current is :

$$
\begin{aligned}
I_{\text {PEAK }} & =I_{\mathrm{IN}(\mathrm{MAX})}+\frac{1}{2} \mathrm{I}_{\mathrm{RIPPLE}}=1.2 \times \mathrm{I}_{\mathrm{IN}(\mathrm{MAX})} \\
& =1.2 \times\left[\frac{\mathrm{IOUT}^{\mathrm{MAX})} \times \mathrm{V}_{\mathrm{OUT}}}{\eta \times \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}}\right]
\end{aligned}
$$

Where I_{PK} is the maximum peak current of inductor, $\mathrm{I}_{\text {RIPPLE }}$ is the ripple current of inductor and η is the efficiency of boost converter.

The minimum inductance value is derived from the following equation:
$\mathrm{L}=\frac{\eta \times \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}{ }^{2} \times\left[\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}\right]}{0.4 \times \operatorname{loUT}(\mathrm{MAX}) \times \mathrm{V}_{\mathrm{OUT}}{ }^{2} \times \mathrm{fOSC}}$
Where fosc is the switching frequency of boost converter. Depending on the application, the recommended inductor value is between $2.2 \mu \mathrm{H}$ to $10 \mu \mathrm{H}$.

Diode Selection

To achieve high efficiency, Schottky diode is a good choice for low forward drop voltage and fast switching time. The output diode rating should be able to handle the maximum output voltage, average power dissipation and the pulsating diode peak current.

Input Capacitor Selection

For better input bypassing, low-ESR ceramic capacitors are recommended for performance. A $10 \mu \mathrm{~F}$ input capacitor is sufficient for most applications. For a lower output power requirement application, this value can be decreased.

Output Capacitor Selection

For lower output voltage ripple, low-ESR ceramic capacitors are recommended. The output voltage ripple consists of two components: one is the pulsating output ripple current flows through the ESR, and the other is the capacitive ripple caused by charging and discharging.

$$
\begin{aligned}
\mathrm{V}_{\text {RIPPLE }} & =\mathrm{V}_{\text {RIPPLE_ESR }}+\mathrm{V}_{\text {RIPPLE_C }} \\
& \cong \mathrm{I}_{\text {PEAK }} \times \mathrm{ESR}_{\mathrm{COUT}}+\frac{\mathrm{I}_{\text {PEAK }}}{\mathrm{C}_{\mathrm{OUT}}}\left(\frac{\mathrm{~V}_{\mathrm{OUT}}-\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{OUT}} \times \mathrm{f}_{\mathrm{OSC}}}\right)
\end{aligned}
$$

Where $\mathrm{I}_{\text {PEAK }}$ is the ripple current of Cout and ESR Cout is equivalent series resistance of Cout.

Output Voltage

The regulated output voltage is calculated by :
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{REF}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
Where $\mathrm{V}_{\text {REF }}$ is the feedback referecne voltage and typical value is 1.24 V .

For most applications, R2 is a suggested a value up to $100 \mathrm{k} \Omega$ Place the resistor-divider as close to the IC as possible to reduce the noise sensitivity.

Loop Compensation

The RT9277C/D voltage feedback loop can be compensated with an external compensation network consisted of R3, C3 and C4 (As shown in Figure 1). Choose R3 to set the high-frequency integrator gain for fast transient response without over or under compensation. Once R3 is determined, C3 is selected to set the integrator zero to maintain loop stability. The purpose of C 4 is to cancel the zero caused by output capacitor and the capacitor ESR. If the ceramic capacitor is selected to be the output capacitor, C4 can be taken off because of the small ESR. C2 is the output capacitor as shown in Figure 1. The following equations give approximate calculations of each component:
$\mathrm{R} 3=\frac{200 \times \mathrm{V}_{\text {OUT }^{2}} \times \mathrm{C} 2}{\mathrm{~L} 1}$
$\mathrm{C} 3=\frac{0.4 \times 10^{-3} \times \mathrm{L1}}{\mathrm{~V}_{\mathrm{IN}}}$
$\mathrm{C} 4=\frac{0.005 \times \mathrm{R}_{\mathrm{ESR}} \times \mathrm{L} 1}{\mathrm{~V}_{\text {OUT }}{ }^{2}}$
The best criterion to optimize the loop compensation is by inspecting the transient response and adjusting the compensation network.

Soft-Start Capacitor

The soft-start function begins from $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ to 1.24 V with a $4 \mu \mathrm{~A}$ constant current charging to the soft-start capacitor, so the capacitor should be large enough for the output voltage to reach regulation inside the soft-start cycle. Typical value of soft-start capacitor range is from 10 nF to 200nF.

Layout Consideration

For best performance of the RT9277C/D, the following guidelines must be strictly followed.

- Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.
- Keep the main current traces as possible as short and wide.
- LX node of DC/DC converter is with high frequency voltage swing. It should be kept at a small area.
- Place the feedback and compensation components as close as possible to the IC and keep away from the noisy devices.

Place feedback (R1, R2) and compensation (R3, C3, C4) components as close as possible to the IC and keep away from the noisy devices.

Figure 3. PCB Layout Guide

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.810	1.100	0.032	0.043
A1	0.000	0.150	0.000	0.006
A2	0.750	0.950	0.030	0.037
b	0.220	0.380	0.009	0.015
D	2.900	3.100	0.114	0.122
e	0.650			
E	4.800	5.000	0.189	0.197
E1	2.900	3.100	0.114	0.122
L	0.400	0.800	0.016	0.031

8-Lead MSOP Plastic Package

DETAILA
Pin \#1 ID and Tie Bar Mark Options

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches				
	Min	Max	Min	Max			
A	0.700	0.800	0.028	0.031			
A1	0.000	0.050	0.000	0.002			
A3	0.175	0.250	0.007	0.010			
b	0.200	0.300	0.008	0.012			
D	2.950	3.050	0.116	0.120			
D2	2.100	2.350	0.083	0.093			
E	2.950	3.050	0.116	0.120			
E2	1.350	1.600	0.053	0.063			
e	0.650						0.026
L	0.425	0.525	0.017	0.021			

W-Type 8L DFN 3x3 Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

[^0]
[^0]: Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

